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1. Introduction

This report gives results of laboratory and field measurements of the millimeter
wavelength optical properties of iron fibers at 94 GHz. These fibers are produced by the
high temperature reduction of Fe(CO)s to iron condensate spherules (diameter - 0. 1 ;4m)
which coalesce in the final stages of their growth to form chains or fibers. In the
presence of a magnetic field, they become quite straight; otherwise they would closely
resemble, for a common example, carbonaceous soot. Examples of the iron fibers are
shown in figure L.'

The laboratory measurements were performed under carefully controlled conditions using
redispersed fibers. Since the laboratory aerosol was well characterized, one can estimate
the optical result using either the ellipsoidal theory or a much more precise theory by
Pedersen et al. (1985, 1987) and Waterman and Pedersen (1992). The agreement for the
latter was well within the limits of the uncertainty and suggested the potential for very
high extinction (absorption) efficiency for longer fibers. However, it has not been
established that the longer iron fibers have the strength to withstand redispersal.

Field measurements of iron fibers generated in-situ are also included and remind the
reader of another feature predicted by the theory (Waterman and Pedersen 1992, van de
Hulst 1957) for this aerosol; that is, the extinction efficiencies at the short wavelengths
(visible, infrared (IR)) are even higher than those for the millimeter wavelengths. This,
of course, is reversed for the 3- to 10-um diameter graphitic particles (Bruce et al.
1990a, 1990b). Unfortunately, because of inadequate characterization (sample oxidized
on the substrates) and particle geometrical complexity (multiple connectedness, nesting)
for these iron fiber experiments (1984), meaningful comparison with the theory is not
feasible.

2. Definitions

Since the research of this group involves both of the components of the extinction, the
usual definition of small alpha for the latter quantity is inconvenient. Therefore, the
symbols will be defined as follows. T, the transmissivity over the pathlength I is defined
by

T = e-fedl

*Figures are located at the end of the report.
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where

C = pE

Small epsilon, e(m2/g), is the extinction efficiency defined as the extinction coefficient,
z(m-'), divided by the mass density, p(g/m 3), of the aerosol in a volume of space. Then,

E = a +St

where a and s1 are the absorption and total scattering efficiencies.

3. Laboratory Measurements

A magnetic "fluidizer" was constructed by Rutstein Associates, Oberlin, Ohio, to
disperse the iron fibers. This unit was extensively modified to supply solely single fibers
in a gentle airflow pattern. The functional system is described in three illustrations
(figures 2, 3, and 4) and their captions. The last of these figures shows the sampling
systems that tap into the airflow of the fluidizer duct (10 cm diameter tube). Note that
the photoacoustical and an aerosol characterization system are in series; that is, the same
sample is optically measured and then collected for analysis.

The photoacoustical system was first described in Applied Optics in 1984 (Bruce and
Richardson 1984) and more recently in 1991, in the same journal (Bruce et al. 1991).
Photoacoustics, which measures only the absorption, is appropriate in the case of these
short (L< < X), small-diameter high-conductivity fibers. Scattering will account for well
under 1 percent of the extinction.

The 94 GHz absorption efficiency, measured photoacoustically in the laboratory, for
separated fibers, using gentle processing in the magnetic fluidizer was

a = 2.2 X 10-1 m2 /g (1987),

for a length distribution peaked near 70,um.

Another value was obtained by using a somewhat stronger fluidizer oscillating magnetic
field. In this case, multiple particles were more often obtained. These particles would
often partly overlap, effectively creating longer particles. Theoretically, the efficiency
increases in a power-law relationship with length, L349, in the "Rayleigh" region

6



(includes all the fibers measured) while the power-law relation for the diameter is weaker
-d 2 53, in the opposite direction with respect to the efficiency. Thus, a measured
increase to a = 4.1 x 101 m2/g for the somewhat siamesed particles is not a surprise.

Precise comparison with the strong power law functions for the diameter and length of
the theory is difficult for fibers with kL< < 1, particularly for the diameters (k is the
propagation vector). As the photographs of figure 1 show, the effective particle diameter
is often not well defined, being complicated by the general "lumpiness." These fibers,
like all condensate solid aerosols we have seen, started growth as spheres and coalesced
when their radii were of the order of tens of nanometers. Growth then continued in this
case to a mean diameter of the order of - 0.2 /m.

The calculational estimate was based on measured length (detailed) and diameter
(approximate) distributions. Graphs of the distribution of lengths and the consequent
calculated optical efficiencies are shown in figures 5 and 6.

Functional dependencies were taken from calculations based on Pedersen et al. (1985,
1987) and Waterman and Pedersen (1992). The result for the separated fibers was

a = 1.12 x 10-. m2 /g.

Here we remind the reader that the fibers measured were separated about as gently as is
possible. The system airflows were carefully managed for this (relatively low velocity
and turbulence). As figure 4 shows, all measurements were made in series
(photoacoustic first, then dosage and sizing from the same sample). It is not likely that
longer single fibers could be extracted from the nested sample provided. Therefore, the
values are probably near maximum for that material.

When the variation in diameter along the fibers is considered, the agreement between
measurement and theory is quite good. Samples with longer separable fibers would
provide another point validation.

4. Comments

Given the strong power-law relationships for optical efficiency functions of the two basic
fiber dimensions, an increase in separable fiber length for the redispersed material would
be valuable for testing the theory and should be sought. However, an altered process of
generation leading to a decrease in fiber diameter of more than about a factor of 2 is
unlikely. Fiber strength becomes a consideration for longer lengths and smaller
diameters. At some point the joints would become too weak to allow collection and
redispersion. (Soot "fibers" often have diameters of less than 0.1 lsm but are very
fragile.)

7



Even a factor of 2 decrease in diameter would increase the efficiency by about a factor
of 6, according to the theory: not enough . . . by itself. Fiber length, then, is the
primary candidate parameter for improvement. Theory savs that simply increasing the
length by, for example, a factor of 3 yields an efficiency increase of about 50! If this
length is difficult to attain, then consider an increase of only a factor of 2, which gives
an efficiency improvement of 11.

The dimensional and thus optical efficiency limits for the redispersed material are
therefore indirectly related to the strength of the material and the magnetic forces
between adjacent fibers as they nest. This could be calculated without great
complication. A small contract to quantify the dimensions for maximum optical
efficiency with the bounds of material strength for ferromagnetic forces would be the
quickest way to determine the potential of these fibers.

5. Field Measurements

There is an additional item of data that relates to the efficiency of this material.
Measurements during a 1984 field experiment at both 140 GHz (X = 2.14 mm) and X
= 0.63 jtm gave the absorption/extinction efficiencies listed below. If the diameters are
assumed to be the same zL those measured in the laboratory for the study of this report,
the Pedersens/Waterman theory would have it that the once-dispersed fibers of the field
test were effectively only about 40 percent longer than those of our laboratory
measurements (recall that they are multiply connected). The implication is that,
assuming similar particles for the two situations, the fluidizer caused comparatively little
breakage. In any case, the generators were not producing particles that were long
enough to realize a significant portion of the iron fiber potential.

Extinction/absorption efficiencies (m2/g) measured during field experiments of 1984.

140 GHz Q-63 m
Run 1 0.67 3.2
Run 2 0.79 4.2

Finally it should be noted from the above data that this would be a truly broadband
absorber if the length could be increased as discussed above. This is not true for the
fibers of the other category (chopped extruded fibers, Bruce et al. 1990) as their
diameters preclude satisfactory efficiency in the IR.
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Figure 1. Scanning electron micrographs of the iron condensation particles.
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SIDE VIEW: FLUIDIZER SYSTEM
AND FLUIDIZER DIAGNOSTICS

S~1

DETECTOR

COING ALTERNATE
coIL AEROSOL I

-- , CIRCUIT

FLUIDIZER

CHAMBER
' P (l m3l

HeNe PROBE SYSTEMS

Figure 2. Fluidizer and airflow circuit. During the laboratory study, the smaller volume
(alternate) flow circuit was used. A nonintrusive flow mechanism (Alprin
ejector) was installed in series in the 10-cm-diameter tubing. A sketch of the
removable section at the base of the fluidizer is shown in figure 3.
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RETURN
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Figure 3. Removable section at base of fluidizer. This unit has several important
functions. The air/aerosol returns to a plenum just underneath the glass
sample holder and passes along channels that enter the fluidizer chamber above
the sample platform. A glass window at the base of the plenum allows the laser
probe beam to pass through the center of the fluidizer chamber after the
particles have been levitated. There is also an air jet near the center of the
chamber that can be used to provide bursts of air when the material is too
nested to be separated by the fluidizer.
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TOP VIEW: SAMPLING SYSTEMS

MICROWAVE

POWER

SYSTEM

WAVEGUIDE FM WAVFI;DF WINDOW

SBACK FLUSH

SIZE, AND -FM ALIBRATION
MASS SAMPLERS GAS

PARALLEL PLENUM

SIZE SAMPLER
FM PHOTOACOUSTICAL

SYSTEM

NEPHELOMETER

MASS SAMPLER

FLUIDIZER OUTPUT TUBE

FM = FLOWMETER

Figure 4. Microwave and aerosol characterization system. The type of microwave
photoacoustical system (spectrophone) used was described some time ago by
Bruce and Richardson (1984). Aerosol characterization systems were arranged
in both parallel and series sampling circuits with respect to the spectrophone.
The assurance of characterizing the identical sample measured photoacoustically
was too strong an approach to ignore. A nephelometer operating in the near
IR, sampling with the primary flow circuit, served as a reference aerosol
density detector for fluidizer performance. Another nephelometer (shown) was
installed in series with the spectrophone for correlation of the time dependence.
Dosimetric samples were obtained on polycarbonate rfters and were analyzed
using atomic absorption spectroscopy (AAS). Size analyses were obtained using
the same filters before the destructive AAS process. All flowmeters were
calibrated using menisci of soapy water moving in a glass tube.
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